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A New Scalar Transition Finite Element
for Accurate Analysis of Waveguides
with Field Singularities

José M. Gil and Juan Zapata

Abstract—When the scalar Helmholtz equation is solved by
Finite Element Method, a slow rate of convergence and inaccurate
results can be found if waveguides containing field singularities
are analyzed. By using singular elements around the singularity,
an important improvement is attained, but when the size of the
singular elements is too small, the correct modeling of the fields
is lost, In this paper we introduce a new family of transition finite
elements that represents a behavior of the axial field component
of the form O(r*), with any 0 < X < 1, for singular points placed
outside the element. By employing these transition elements
adjacent to singular elements, the loss of the singular modeling
of the fields is avoided.

1. INTRODUCTION

N THE analysis of homogeneous waveguides, it is com-

mon to find geometries with sharp metal edges in which
transversal fields can become infinite.

Several finite element implementations can be found in the
literature that cope with the singular behavior of fields. One
possibility is to employ edge elements [1],{ 2], although the
standard trial functions cannot model the field singularity in
the sharp metal edges adequately. Other authors have proposed
to expand the trial function space with singular functions,
associating each with a nodeless variable [3]; this choice has
the drawback of increasing the bandwidth of the matrix [4].

When the equation to be solved is scalar, as it happens
in the quasi-TEM analysis of transmission lines and in the
analysis of homogeneous waveguides, a simple and advan-
tageous choice is to employ scalar singular elements (SE),
such as those proposed in [5]-[7]. This way, the accuracy
and speed of convergence of the method are increased and a
good approximation of transversal fields in the singular zone
is reached.

Nevertheless, the correct choice of the size of singular
elements is a subject that has not been explored enough. It
can gencrally be expected that by using refinements of the
mesh around the points where the singularity is produced, the
results are improved. However, if the singular elements are too
small, the singular modeling of the fields can be lost, raising
the error sharply [8].
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To avoid this error, some authors have proposed the use
of special elements [8], [9], named transition elements (TE),
which are located between the singular elements and the
remaining standard elements (StE).

However, there are not any transition elements in the
applicable literature that can be employed when the order of
singularity of the fields is an irrational number, as is found in
the planar transmission lines.

In this paper, a new family of transition finite elements is
developed that can represent a singularity with any order when
this singularity is placed on a point external to the element.
Transition elements avoid the loss of singular modeling of the
fields when they are placed adjacent to singular elements such
as those presented in [5] and [7].

II. SiZE OF SINGULAR ZONE

The appropiated functional for TEM or quasi-TEM modes
in transmission lines

Flu) = 1/2/6(Vtu)2ds (1)
or the corresponding one for TE and TM modes in homoge-
neous waveguides

F(u)=1/2 / (Viu)? — K2u?)] ds )
8§

where K, is the cutoff wavenumber can be easily solved by
the FEM. However, when the analyzed structure includes field
singularities, the accuracy and speed of convergence of the
method are increased by using a refinement of the mesh in the
neighbourhood of the singularity, surrounding it with SE and
employing a rough mesh in areas of the section where smooth
variations of the fields are expected.

In practice, it can be noted [10] that with a fixed number of
degrees of freedom, the accuracy of the solution substantially
depends on a parameter denominated size or diameter of the
singular zone ¢ (Fig. 1). In other words, it depends on the
size of the region surrounding the singular point meshed with
SE. The accuracy tends to be improved when s is decreasing
but, when the SE are too small, the modeling of singular term
is partially lost. Then, 4 new source of error appears because
the adjacent elements to singular zone (StE) have to represent
a part of singular term. Obviously, there will be an optimum
value of s for each problem and analyzed mode.
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Fig. 1. Mesh of the singular zone.

A better approximation of the fields, and therefore of the
eigenvalue, can be expected if the adjacent StE to singular zone
are replaced with other elements suitable t0 model the singular
behavior of the fields in a point external to the element. This
way, though the SE are very small, the term 7* is adequately
modelled over the whole area of interest. If the size of SE is
correctly chosen, the advantages obtained by employing these
TE are reduced, but the correct size is unknown a priori.

This paper will show that meshes using a mixture of SE, TE,
and StE, give an accuracy in the results that is greater or equal
to that obtained when we use only SE and StE, and this is true
for any size of singular and transition zones that we choose.

HI. NEw FAMILY OF TRANSITION ELEMENTS

The new transition elements are cuadrilateral elements that
can represent a behavior of the axial field component of the
form O(r*) with any 0 < A < 1, located on a point external
to the element. The unknown function is approximated with
Lagrange polynomials, and the singularity is introduced in
terms of the geometrical transformation (Fig. 2).

This transformation is given by means of the following
expression:

1+ plat/™ — 1™
t—ty = —~.p(10/—m~l‘| [(tg—to)-}-o(tg—tz)] 3)
@y
t==x,y

where { = «,y are the coordinates in real space; to = o, Yo
are the coordinates of the singular point; t; = z,,,, with
t = 1,4 are the vertex coordinates of the element; pyo are
the coordinates in local space; m is a parameter; and aq is
defined as

_d03 _ dO2
~ do4 ~ dO1

with dO1 the distance from the point O (singular point) to the
vertex 4. It is sufficient to know the coordinates of three of the
vertex and the parameter ag to define the new element.
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Fig. 2. Mapping of new transition element.

The Jacobian of the geometrical transformation is

2m~—1
1)]

&)

J=m 1/m 1/m

(o™ = 1) [1 + plad/™ -
Jo

where Jgy is twice the surface of triangle O23. The Jacobian

vanishes if

1
ay " —1

p:

and, therefore, the transformation is not invertible in this point.
It can be easily shown [10] that along a straight line through
the singular point, p it is proportional to

p/m, 7

On the other hand, if we employ a second order approxi-

mation for the unknown function, u, the shape functions have
these terms

N, — (p,0,p% 0%, po, constants) ®)

and, in the neighborhood of the singular point, the function u
and its gradient exhibit a behavior

w — O(r?/™ #1/™  constants)

Vu — 0(7«21'” i constams). ©)

When r is small, the principal term is

1—m
rom

(10
which represents the singular behavior of the field.

If the principal term to be modelled is of the form O(r?),
it would be sufficient to take m = 1/\ in the geometrical
transformation to represent the singularity adequately. An
analogous discussion could be applied when higher-order
shape functions are used, and it is easy to check how the
proposed element is compatible with any order StE adjacent
to the edge 23.
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Fig. 3. Rectangular vaned waveguide (A4 = 1 cm).

Fig. 4. Mixed mesh of the rectangular vaned waveguide with the singular
and transition zones. s = Size of singular zone. L = Size of singular +
transition zone.

IV. NUMERICAL RESULTS

In order to evaluate the improvement obtained by using TE,
the first singular TE mode in a rectangular vaned waveguide,
as shown in Fig. 3, has been studied. This structure has an
180° wedge with a transversal field singularity on the edge
of the form O(r~1/2). The eigenvalue, K, =2.0981 rad/cm,
chosen as value of convergence, has been obtained using SE
and a uniform mesh of 2047 nodes.

In this case, a computationally more efficient mesh has
been employed, composed of singular triangular elements as
proposed in [5], standard cuadrilateral elements, and a layer
of TE between both of them. This situation is shown in Fig.
4, which represents a mesh of the structure with 4 SE, 4 TE,
14 StE, and 70 degrees of freedom.

In Fig. 5. the eigenvalue K. versus s/L is shown, with L as
a parameter, where s is the size of the singular zone and L is
the size of the singular + transition zone. The results obtained
by using the mesh with StE. + T.E. + S.E. are compared with
results obtained with the same mesh but replacing TE for StE.
It can be observed in this case that when SE are too small (i.e.,
s/L =0.01), the error increases sharply. This can be explained
because the StE must represent a part of singular term. This
source of error disappears when we replace the StE with TE.
It can also be noticed that, when SE are relatively large (i.e.,
s/ L =0.8), the improvement obtained when we substitute StE
for TE is negligible because the singular term is correctly
approximated.

It is known that by using StE the results are affected by
the employment of adjacent elements of very different size
that degrades the FEM aproximation. In this case, as the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL 43, NO 8, AUGUST 1995

2107
2106 [
2105
2104 -
2103
2102

Ke(rad/cm)

2.101 -

21
2009 ¥
2098 -

2.097 | | 1 | L 13 |
0 0.1 062 03 04 05 06 07 08

s/L

Fig. 5. K. of the first singular TE mode 1n the rectangular vaned waveguide
versus the relation between the size of the singular zone (s) and the size
of the singular + transition zone (L), with L = 0.25 cm. A: singular and
standard elements. /: singular, transition and standard elements. : value
of convergence K. = 2.0981 rad/cm (2047 nodes).

same meshes were employed for computing both curves in
the figure, the preceding effect would have similar influence
in both results.

It has been checked that the described behavior holds for
different values of L and A and, as a consequence, the problem
of the correct choice of SE size is minimized. In conclusion, it
can be assured that the incorporation of a layer of TE between
SE and StE produces results that always are better or equal to
those obtained when TE are not employed.

The loss of singular modeling when SE are very small is
clarified in Fig. 6(a) and (b). There, the radial component
of the gradient of u (transversal field) in the neighborhood
of the singular point, following the ® = /4 direction,
has been represented. In Fig. 6(a), this field is shown when
TE are employed. An excellent agreement with the expected
theoretical value O(r~1/?) is confirmed. On the contrary,
in Fig. 6(b) the loss of this agreement can be seen. This
effect is produced because of the replacement of TE by
StE, which cannot represent the singular variation of the
field.

Finally, in Fig. 7, the advantage of using the StE. + T.E. +
S.E. mesh, as opposed to only the StE mesh, is shown. It can
be seen that the solution obtained in the first case is practically
independent of the size of the SE. The value of convergence,
K. = 2.0981 rad/cm, was obtained by using the SE and a
uniform mesh of 2047 nodes.

Similar conclusions were obtained by analyzing structures
containing singularities of different orders to those previously
described. Results on the first TE mode of a single ridge
waveguide, containing a singularity of the form O(r~1/3),
can be found in Fig. 8. A mesh with 6 SE, 6 TE, 6 StE, and
a total of 58 degrees of freedom have been employed. In the
figure the mesh and the eigenvalue versus the relation of the
sizes s/ L with and without the employment of TE, are shown.
Once more, value of convergence (K. = 2.2497 rad/cm) was
computed with the SE and a uniform mesh of 1541 nodes.

Again, when the SE are too small, the error can be signif-
icant if the TE are not employed.
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Fig. 7. K of the first singular TE mode in the rectangular vaned waveguide
versus the relation between the size of the singular zone (s) and the size of
the singular + transition zone (L), with L = 0.25 cm, in a mesh with 85
nodes by using singular, transition, and standard elements (57) and substituting
singular and transition elements for siandard elements (). : value of
convergence K'c = 2.0981 rad/cm (2047 nodes).
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Fig. 6. (a) Radial gradient versus the distance to singular point, following

the © = /4 direction, with transition elements. s/L = 0.01. ¥7: singular
+ transition elements. : theoretical variation. (b) Radial gradient versus
the distance to singular point, following the ® = = /4 direction. without
transition elements. s/L = 0.01. A: singular 4 standard elements.
theoretical variation.

V. CONCLUSION

It has been shown that the accuracy improvement obtained
by using singular elements (SE) in the FEM resolution of the
scalar Helmholtz equation, when transversal field singularities
are present, is lost if the size of singular elements is very
small. This is because a part of singular term is not adequately
modelled.

A new family of transition finite elements (TE) has been
developed suitable to represent a behavior of the axial field
component of the form O(r*) with any 0 < A < 1 when the
singular point is external to the element.

These new elements are compatible with any order standard
elements (StE) and they provide improvement in the accuracy
of the solution of waveguides with field singularities. The

2.252
a
7
22515 s /
\ r__L— "
\ —5 5
T 2251 | 4 blw T
Q \ 1 | St st
® A — A
£ 22505 !
A K
v - . \L_\ /ﬁ///x
A R .
225
2.2495 | | L ] | | |
0 01 02 03 04 05 06 07 08
S/L

Fig. 8. A of the first TE mode. in the single ridge waveguide, versus the
relation between the size of the singular zone (s) and the size of the singular -+
transition zone (L), with L = 0.125 cm, in a mesh with 58 degrees of freedom.
A= B =2a¢=2b=0.5cm. A: singular and standard elements.<y: singular,
transition and standard elements. : value of convergence I = 2,2497
rad/cm (1541 nodes).

improvement is practically independent of the size of the
singular elements used.

REFERENCES

[1] K. Ise, K. Inoue, and M. Koshiba, “Three-dimensional finite-element
mehtod with edge elements for electromagnetic waveguide discontinu-
ities,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1289-1295,
Aug. 1991.

J. F. Lee, D. K. Sun, and Z. J. Cendes, “Full-wave analysis of
dielectric waveguides using tangencial vector finite elements,” IEEE
Trans. Microwave Theory Tech., vol. 39, no. 8, pp. 1262-1271, Aug.
1991.

J. P. Webb, “Finite element analysis of dispersion in waveguides with
sharp metal edges,” IEEE Trans. Microwave Theory Tech., vol. 36, pp.
1819-1824, Dec. 1988.

2]

{31



1982

[4]

[6]

(7]

(8]

191

[10]

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 8. AUGUST 1995

J. R. Whiteman, “Finite elements, singularities and fracture,” in The
Mathematics of Finite Elements and Applications II. J. R. Whiteman.
Ed. London: Academic. 1979, pp. 35-54.

J. M. Gil and J. Zapata, “Efficient singular element for finite element
analysis of quasi-TEM transmission lines and waveguides with sharp
metal edges,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 92-98,
Jan, 1994.

B. Schift. “Eigenvalues for ridged and other waveguides containing
corners of angle 37/2 or 2% by finite element method,” IEEE Trans.
Microwave Theory Tech., vol. 39, no. 6, pp. 10341039, June 1991.

7. Pantic and R. Mittra, “Quasi-TEM analysis of microwave tranmission
lines by the finite-element method,” JEEE Trans. Microwave Theory
Tech.. vol. MTT-34, no. 11, pp. 1096-1103. Nov. 1986.

P. P. Lynn and A. R. Ingraffea, “Transition elements to be used with
quarter-point crack-tip elements.” Int. J. Num. Meth. Engng., vol. 12,
pp. 1031-1036, 1978.

M. A. Hussain, J. D. Vasilakis, and S. L. Pu, "“Quadratic and cubic
transition elements,” Int. J. Num. Meth. Engng., vol. 17, pp. 1397-1406,
1981.

J. M. Gil, “Contribucién al andlisis de sistemas de transmisién con
singularidades de campo mediante elementos finitos singulares,” Ph.D.
dissertation. Universidad Politécnica de Madrid, 1993,

José M. Gil received the Ingeniero de Telecomunicacién degree in January
1986 and the Ph.D. degree mn 1993, both from the Universidad Politécnica
de Madrid.

He is currently an Assistant Professor in the Departamento de Electro-
magnetismo y Teorfa de Circuitos at the Universidad Politécnica de Madrid.
His current research interest includes computer methods in electromagnetics,
especially the application of the finite element method.

Juan Zapata received the Ingeniero de Telecomunicacién degree in 1970 and
the Ph.D. degree in 1974, both from the Universidad Politécnica de Madrid,
Spain.

Since 1970 he has been with the Grupo de Electromagnetismo Aplicado
v Microondas at the Universidad Politécnica de Madrid, where he became
an Assistant Professor in 1970. Associate Professor in 1975, and Professor
in 1983. He has been engaged in research on microwave active circuits
and interactions of electromagnetic fields with biological tissues. His current
research interest includes computer-aided design for microwave passive
circuits and numerical methods in electromagnetism.



